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Abstract— Dispersion parameter should be the unity in the case of the univariate Bernoulli data. But there may be some deviations if 
there is a sequence of the Bernoulli outcomes, that may lead to Binomial case. Over (lower) dispersion criterion is happened if the 
variance of actual response, var(y), is more (less) than the nominal variance as a function of the mean, var(μ). This paper presents the 
mathematical form for estimating and modifying the dispersion parameters for the outcome correlated binary (0,1) Big data, with 
scalar and matrix values, in Bivariate case. The impact of the estimates of dispersion parameter on the outcome correlated binary Big 
data is indicated.  
   In general, the aim is making the dispersion parameters are close or equal to the unity. The purpose is controlling of marginal 
probabilities of the correlated binary outcomes. Since the increasing of marginals, increases the values of dispersion estimates. We can 
use these property to decrease the over-dispersion to close to the unity. The R program and its packages, is used to generate and fit 
the binary correlated Big data. Scaling and Roots techniques that depend on the estimates of dispersion parameters are used to 
modify the outcome correlated binary data. We have found that Scaling and Roots processes have similar results and good effects, 
only for binary Big data. Since the manner is different when deal with Small observations. 
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I. INTRODUCTION 
The estimation of dispersion parameter in the univariate case can be obtained easily using the Pearson’s Chi-square or the 

Deviance function. The over(lower) dispersion can be deduct from the equation: var( ) var( )y φ µ= where φ is the 

univariate dispersion parameter. When 1φ >  this implies the over-dispersion, while 1φ <  implies the lower-dispersion 
(McCullagh and Nelder, 1989). Many studies have devoted the dispersion criteria in Univariate case, namely, when the 
Binomial data are used. It is difficult to extend these methods to estimate the dispersion parameters in Bivariate case. Because 
in Bivariate case, the association between the correlated response variables may be happened. So, we must take this association 

into account when estimate the dispersion parameter. In Independence case, the estimate of dispersion parameter φ is 
performed as in the univariate case.  

Some studies have presented attributes of the overdispersion problem as Smith and Heitjan (1993) provided an appropriate 
statistical tool to detect extra Binomial variation.  
   Cook and Ng (1997) described Bivariate logistic-normal mixture model for over-dispersed two state Markov processes. 
Saefuddin et al. (2011) showed the effect of overdispersion on the hypothesis test of Logistic regression. Simple method 
proposed by William (1982) was used to correct the effect of overdispersion by taking the inflation factor into consideration. 
When the overdispersion does not occur or very small overdispersion occurs, dispersion parameter φ  will be approximately 

equal to zero, so iY  exactly follows Binomial distribution, ),( iinBin π , and )(1=)( iiii nYVar ππ − , Collett (2003). The 

value of Pearson’s Chi-square statistic depends on φ̂ so, iteration process, is needed to find the optimum value, as a test of φ̂ .  
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   Dispersion parameter for binomialff family =1. For the two correlated binary Big data, the independent variable X3 has the 
lowest residual deviance, this reflects the importance of this variable to the model. Also, has a significant effect with 2nd 
additive predictor in the case of 500,000 observations. But there are not one of the other independent variables X1 , X2 have 
significant effects, with 5% significant level. For Loglikelihood value, the independent variable X1 has the lowest value in the 
case of 10,000 observations. While the independent variable X3 has the lowest value in the case of 500,000 observations. 
 

V. CONCLUSION 
   This paper presents the mathematical form for estimating and modifying the dispersion parameters for the outcome correlated 
binary (0,1) Big data, with scalar and matrix values, in Bivariate case. The effect of dispersion estimates on the outcome 
correlated binary Big data is indicated. The marginals of two correlated binary outcomes variables effect on the values of 
estimates of dispersion parameters. Using these property, we can motivate the tends of estimates to close to the unity. The 
program R and its packages are used to generate and fit the Big data. 
    Roots and Scaling methods are used to modify the outcome correlated binary Big data. We have found that Scaling and Roots 
processes have similar results, and good effects only for binary Big data. Since the manner is different when deal with small 
obsevations. 
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